rweq-proofs
CommunityBuild robust RwEq proofs with canonical lemmas.
AuthorArthur742Ramos
Version1.0.0
Installs0
System Documentation
What problem does it solve?
RwEq proofs are central to high-level equality reasoning in ComputationalPaths. This Skill provides a library of essential lemmas and strategies to compose rewrite-equivalence proofs using transitivity, congruence, and canonical simplifications.
Core Features & Use Cases
- Equivalence properties: rweq_refl, rweq_symm, rweq_trans
- Unit laws: rweq_cmpA_refl_left, rweq_cmpA_refl_right
- Inverse laws: rweq_cmpA_inv_left, rweq_cmpA_inv_right
- Associativity & Congruence: rweq_tt, rweq_tt_symm, rweq_trans_congr_left, rweq_trans_congr_right
- Symmetry Congruence & CongrArg: rweq_symm_congr, rweq_congrArg_of_rweq, etc.
- Proof strategies: direct transitivity, calc-chains, and nested congruence
- Transport Rules: rweq_transport_refl
- Quick Start: construct a simple rweq proof using rweq_trans and rweq_cmpA_refl_left
Quick Start
Prove RwEq (trans refl p) p using path_simp or rweq_refl.
Dependency Matrix
Required Modules
None requiredComponents
Standard package💻 Claude Code Installation
Recommended: Let Claude install automatically. Simply copy and paste the text below to Claude Code.
Please help me install this Skill: Name: rweq-proofs Download link: https://github.com/Arthur742Ramos/ComputationalPathsLean/archive/main.zip#rweq-proofs Please download this .zip file, extract it, and install it in the .claude/skills/ directory.