rweq-proofs

Community

Build robust RwEq proofs with canonical lemmas.

AuthorArthur742Ramos
Version1.0.0
Installs0

System Documentation

What problem does it solve?

RwEq proofs are central to high-level equality reasoning in ComputationalPaths. This Skill provides a library of essential lemmas and strategies to compose rewrite-equivalence proofs using transitivity, congruence, and canonical simplifications.

Core Features & Use Cases

  • Equivalence properties: rweq_refl, rweq_symm, rweq_trans
  • Unit laws: rweq_cmpA_refl_left, rweq_cmpA_refl_right
  • Inverse laws: rweq_cmpA_inv_left, rweq_cmpA_inv_right
  • Associativity & Congruence: rweq_tt, rweq_tt_symm, rweq_trans_congr_left, rweq_trans_congr_right
  • Symmetry Congruence & CongrArg: rweq_symm_congr, rweq_congrArg_of_rweq, etc.
  • Proof strategies: direct transitivity, calc-chains, and nested congruence
  • Transport Rules: rweq_transport_refl
  • Quick Start: construct a simple rweq proof using rweq_trans and rweq_cmpA_refl_left

Quick Start

Prove RwEq (trans refl p) p using path_simp or rweq_refl.

Dependency Matrix

Required Modules

None required

Components

Standard package

💻 Claude Code Installation

Recommended: Let Claude install automatically. Simply copy and paste the text below to Claude Code.

Please help me install this Skill:
Name: rweq-proofs
Download link: https://github.com/Arthur742Ramos/ComputationalPathsLean/archive/main.zip#rweq-proofs

Please download this .zip file, extract it, and install it in the .claude/skills/ directory.
View Source Repository